
Gebrauchsanleitung

Prestabo XL

Pressverbindersystem aus unlegiertem Stahl für unlegierte Stahlrohre

Inhaltsverzeichnis

Über dies	e Gebrauchsanleitung
1.1 Zielgru	ppen
_	eichnung von Hinweisen
Produktin	formation
2.1 Norme	n und Regelwerke
2.2 Bestim	mungsgemäße Verwendung
2.2.1	Einsatzbereiche
2.2.2	
2.3 Produk	ktbeschreibung
2.3.1	Übersicht
2.3.2	Rohre
2.3.3	Pressverbinder
2.3.4	Dichtelemente
2.3.5	Kennzeichnungen an Bauteilen
2.4 Verwer	ndungsinformationen
2.4.1	Korrosion
Handhabu	ing
3.1 Transp	ort
•	ng
-	geinformationen
3.3.1	Montagehinweise
3.3.2	Potenzialausgleich
3.3.3	3
3.3.4	Platzbedarf und Abstände
3.3.5	Benötigtes Werkzeug
3.4 Monta	ge
3.4.1	Dichtelement austauschen
3.4.2	Rohre ablängen
3.4.3	Rohre entgraten
3.4.4	Verbindung verpressen
3.4.5	Flanschverbindungen
3.4.6	Dichtheitsprüfung
3 5 Enteor	anna

1 Über diese Gebrauchsanleitung

Für dieses Dokument bestehen Schutzrechte, weitere Informationen erhalten Sie unter *viega.de/rechtshinweise*.

1.1 Zielgruppen

Die Informationen in dieser Anleitung richten sich an Heizungs- und Sanitärfachkräfte bzw. an unterwiesenes Fachpersonal.

Für Personen, die nicht über die o. a. Ausbildung bzw. Qualifikation verfügen, sind Montage, Installation und ggf. Wartung dieses Produkts unzulässig. Diese Einschränkung gilt nicht für mögliche Hinweise zur Bedienung.

Der Einbau von Viega Produkten muss unter Einhaltung der allgemein anerkannten Regeln der Technik und der Viega Gebrauchsanleitungen erfolgen.

1.2 Kennzeichnung von Hinweisen

Warn- und Hinweistexte sind vom übrigen Text abgesetzt und durch entsprechende Piktogramme besonders gekennzeichnet.

GEFAHR!

Warnt vor möglichen lebensgefährlichen Verletzungen.

WARNUNG!

Warnt vor möglichen schweren Verletzungen.

VORSICHT!

Warnt vor möglichen Verletzungen.

HINWEIS!

Warnt vor möglichen Sachschäden.

Zusätzliche Hinweise und Tipps.

2 Produktinformation

2.1 Normen und Regelwerke

Regelwerke aus Abschnitt: Einsatzbereiche

Geltungsbereich / Hinweis	In Deutschland geltendes Regelwerk
Planung, Errichtung, Betrieb und Instandhaltung von Feuerlöschan- lagen	DIN 14462

Regelwerke aus Abschnitt: Medien

Geltungsbereich / Hinweis	In Deutschland geltendes Regelwerk
Eignung für salzarmes / salzhaltiges Trinkwasser	VDI-Richtlinie 2035, Tab. 1
Eignung für Heizungswasser in Pumpen-Warmwasser-Heizungs-anlagen	VDI-Richtlinie 2035, Blatt 1 und Blatt 2

Regelwerke aus Abschnitt: Dichtelemente

Geltungsbereich / Hinweis	In Deutschland geltendes Regelwerk
Einsatzbereich des EPDM-Dicht- elements	DIN EN 12828
Heizung	

Regelwerke aus Abschnitt: Korrosion

Geltungsbereich / Hinweis	In Deutschland geltendes Regelwerk
Sauerstoffeintrag bei Wiederauffüllen eines Systems	DIN EN 14868
Sauerstoffgehalt in salzarmem / salzhaltigem Wasser	VDI-Richtlinie 2035 Tab. 1
Lückenloser äußerer Korrosions- schutz bei Einsatz in Kühlkreis- läufen	DIN 50929
Lückenloser äußerer Korrosions- schutz bei Einsatz in Kühlkreis- läufen	AGI-Arbeitsblatt Q 151

Regelwerke aus Abschnitt: Lagerung

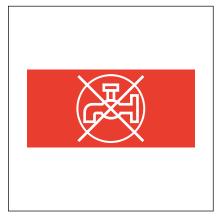
Geltungsbereich / Hinweis	In Deutschland geltendes Regelwerk
Anforderungen für die Lagerung der Materialien	DIN EN 806-4, Kapitel 4.2

Regelwerke aus Abschnitt: Flanschverbindung herstellen

Geltungsbereich / Hinweis	In Deutschland geltendes Regelwerk
Qualifizierung von Personal für die Montage von Flanschverbindungen	VDI-Richtlinie 2290
Ermittlung von Anzugsmomenten	DIN EN 1591-1

Regelwerke aus Abschnitt: Dichtheitsprüfung

Geltungsbereich / Hinweis	In Deutschland geltendes Regelwerk
Prüfung an der fertiggestellten, jedoch noch nicht verdeckten Anlage	DIN EN 806-4
Dichtheitsprüfung für Wasser- Installationen	ZVSHK-Merkblatt: "Dichtheitsprüfungen von Trink-wasserinstallationen mit Druckluft, Inertgas oder Wasser"
Anforderungen an Füll- und Ergänzungswasser	VDI 2035



2.2 Bestimmungsgemäße Verwendung

Stimmen Sie die Nutzung des Systems für andere als die beschriebenen Einsatzbereiche und Medien mit Viega ab.

2.2.1 Einsatzbereiche

Das System ist für den Einsatz in Industrie- und Heizungsanlagen bestimmt. Das System ist nicht für die Verwendung in Trinkwasser-Installationen geeignet. Rohre und Pressverbinder sind deshalb mit einem roten Symbol "Kein Trinkwasser" gekennzeichnet.

Abb. 1: "Kein Trinkwasser"

Das Pressverbindersystem ist für den Nenndruck PN 16 ausgelegt.

Der Einsatz ist u. a. in folgenden Bereichen möglich:

- Industrie- und Heizungsanlagen
- nasse Sprinkleranlagen (mit sendzimirverzinktem Rohr)
- Feuerlöschanlagen nass, siehe 🕏 "Regelwerke aus Abschnitt: Einsatzbereiche" auf Seite 4
 - ausschließlich mit sendzimirverzinktem Rohr
- Solar-Anlage mit Flachkollektoren
- Solar-Anlagen mit Vakuumkollektoren (nur mit FKM-Dichtelement)
- Druckluftanlagen
- Fernwärme-Versorgungsanlagen in Sekundärkreisläufen
- Kühlwasserleitungen (geschlossener Kreislauf)
- Vakuumanlagen (auf Anfrage)
- Anlagen f
 ür technische Gase (auf Anfrage)
- Lackieranlagen (nur mit labs-freien Bauteilen)

Für Informationen über Einsatzbereiche der Dichtelemente siehe Kapitel 2.3.4 "Dichtelemente" auf Seite 11.

Das System ist für die Verlegung in warmer und trockener Atmosphäre bestimmt. Die Rohre dürfen keiner dauerhaften Feuchtigkeit ausgesetzt sein. Andernfalls kann das System korrodieren, siehe *Kapitel 2.4.1 "Korrosion" auf Seite 15.*

2.2.2 Medien

Das System kann in geschlossenen Wasserkreisläufen eingesetzt werden, in denen kein Sauerstoffeintrag während des Betriebs möglich ist.

Für den Sauerstoffgehalt gelten folgende Grenzwerte, siehe % "Regelwerke aus Abschnitt: Medien" auf Seite 4:

- salzarmes Wasser ≤ 0,1 mg/l
- salzhaltiges Wasser < 0,02 mg/l

Das System ist u. a. für folgende weitere Medien geeignet:

Geltende Richtlinien siehe \$\ointige _mRegelwerke aus Abschnitt: Medien" auf Seite 4.

- Heizungswasser für geschlossene Pumpen-Warmwasser-Heizungsanlagen
- Druckluft (trocken) gemäß der Spezifikation der verwendeten Dichtelemente
 - EPDM bei Ölkonzentration < 25 mg/m³
 - FKM bei Ölkonzentration ≥ 25 mg/m³
- Frostschutzmittel, Kühlsolen bis zu einer Konzentration von 50 %

HINWEIS!

Setzen Sie bei Kühlwasser mit Zusätzen (z. B. Frostschutzmittel etc.) keine sendzimirverzinkten Rohre ein. Andernfalls kann sich die Zinkbeschichtung im Innenrohr lösen und Anlagenteile verstopfen.

2.3 Produktbeschreibung

2.3.1 Übersicht

Das Rohrleitungssystem besteht aus Pressverbindern in Verbindung mit unlegierten Stahlrohren und den dazu passenden Presswerkzeugen.

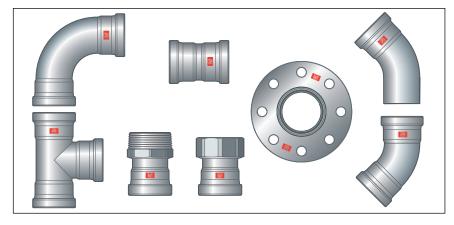


Abb. 2: Prestabo XL-Sortimentauswahl

Die Systemkomponenten sind in folgenden Dimensionen verfügbar: d64,0 / 76,1 / 88,9 / 108,0.

2.3.2 Rohre

Prestabo XL-Rohre sind in einer Länge von 6 m verfügbar.

Von dem beschriebenen System sind folgende Rohre erhältlich:

Rohrart	Prestabo XL-Rohr	Prestabo XL-Rohr für Sonderanwendungen
Einsatzbereich	Industrie- und Hei- zungsanlagen	Sprinkler- und Druck- luftanlagen
d [mm]	64,0 / 76,1 / 88,9 / 108,0	64,0 / 76,1 / 88,9 / 108,0
Art der Verzinkung	außen galvanisch ver- zinkt	innen und außen send- zimirverzinkt
Dicke der Verzin- kung	8–15 μm	15–27 μm
Schutzkappe	rot	weiß

Sendzimirverzinkte Rohre sind nicht für Heizungs- und Kühlanlagen geeignet.

Rohrkenndaten blankes Prestabo XL-Rohr

d x s [mm]	Volumen pro Meter Rohr [l/m]	Rohrgewicht [kg/m]
64,0 x 2,0	2,83	3,06
76,1 x 2,0	4,08	3,66
88,9 x 2,0	5,66	4,29
108,0 x 2,0	8,49	5,23

Rohrleitungsführung und Befestigung

Zur Befestigung der Rohre nur Rohrschellen mit chloridfreien Schallschutzeinlagen verwenden.

Die allgemeinen Regeln der Befestigungstechnik beachten:

- Befestigte Rohrleitungen nicht als Halterung für andere Rohrleitungen und Bauteile verwenden.
- Keine Rohrhaken verwenden.
- Abstand zu Pressverbindern einhalten.
- Ausdehnungsrichtung beachten: Fix- und Gleitpunkte planen.

Darauf achten, die Rohrleitungen so zu befestigen und vom Baukörper zu entkoppeln, dass sie keinen Körperschall infolge thermischer Längenveränderungen sowie möglicher Druckschläge auf den Baukörper oder andere Bauteile übertragen können.

Folgende Befestigungsabstände einhalten:

Abstand zwischen den Rohrschellen

d [mm]	Befestigungsabstand der Rohrschellen [m]
64,0	4,00
76,1	4,25
88,9	4,75
108,0	5,00

Längenausdehnung

Rohrleitungen dehnen sich bei Erwärmung aus. Die Wärmeausdehnung ist materialabhängig. Längenänderungen führen zu Spannungen innerhalb der Installation. Diese Spannungen müssen durch geeignete Maßnahmen ausgeglichen werden.

Bewährt haben sich:

- Fix- und Gleitpunkte
- Dehnungsausgleichsstrecken (Biegeschenkel)
- Kompensatoren

Wärmeausdehnungskoeffizienten verschiedener Rohrwerkstoffe

Material	Wärmeausdehnungsko- effizient α [mm/mK]	Beispiel: Längenausdehnung bei Rohrlänge L = 20 m und $\Delta T = 50 \text{ K}$ [mm]
Verzinkter Stahl	0,0120	12,0

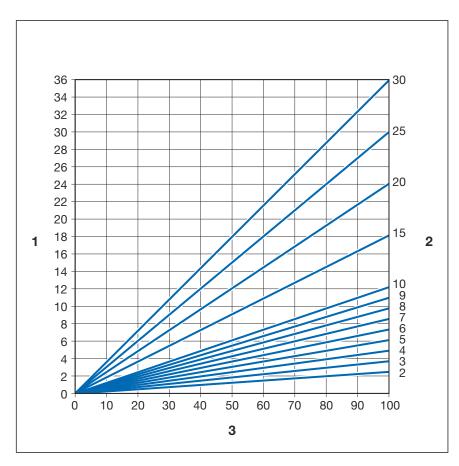


Abb. 3: Längenausdehnung Stahlrohre

- 1 Längenausdehnung [→]ΔI [mm]
- 2 Rohrlänge → I₀ [m]
- 3 Temperaturdifferenz →Δθ [K]

Die Längenausdehnung Δl lässt sich aus dem Diagramm ablesen oder kann mit folgender Formel rechnerisch ermittelt werden:

 $\Delta I = \alpha \text{ [mm/mK]} \times L \text{ [m]} \times \Delta \theta \text{ [K]}$

2.3.3 Pressverbinder

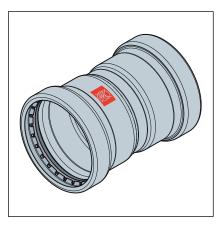


Abb. 4: Pressverbinder

Bei Prestabo XL-Pressverbindern befinden sich ein Schneidring, ein Trennring und ein Dichtelement in der Sicke des Pressverbinders. Beim Verpressen schneidet der Schneidring in das Rohr und sorgt so für eine kraftschlüssige Verbindung.

Bei der Installation und später beim Verpressen schützt der Trennring das Dichtelement vor Beschädigungen durch den Schneidring.

SC-Contur

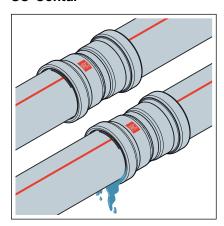


Abb. 5: SC-Contur

Viega Pressverbinder verfügen über die SC-Contur. Die SC-Contur ist eine vom DVGW zertifizierte Sicherheitstechnik und sorgt dafür, dass der Pressverbinder im unverpressten Zustand garantiert undicht ist. So fallen versehentlich nicht verpresste Verbindungen bei der Dichtheitsprüfung auf.

Viega gewährleistet, dass versehentlich nicht verpresste Verbindungen bei der Dichtheitsprüfung sichtbar werden:

- bei der nassen Dichtheitsprüfung im Druckbereich von 0,1–0,65 MPa (1,0–6,5 bar)
- bei der trockenen Dichtheitsprüfung im Druckbereich von 22 hPa-0,3 MPa (22 mbar-3,0 bar)

2.3.4 Dichtelemente

Die Pressverbinder sind werkseitig mit EPDM-Dichtelementen ausgestattet. Für Einsatzbereiche mit höheren Temperaturen, wie z. B. bei Fernwärme-Versorgungsanlagen, müssen die Pressverbinder mit FKM-Dichtelementen ausgestattet werden.

Die Dichtelemente können folgendermaßen unterschieden werden:

- EPDM-Dichtelemente sind schwarz glänzend.
- FKM-Dichtelemente sind schwarz matt.

Einsatzbereich des EPDM-Dichtelements

Einsatzbereich	Heizung	Solaranlagen	Kühlkreisläufe	Druckluft	Technische Gase
Anwendung	Pumpen-Warm- wasser-Hei- zungsanlage	Solarkreislauf	Sekundärkreis- lauf geschlossen	alle Rohrlei- tungsabschnitte	alle Rohrlei- tungsabschnitte
Betriebstempe- ratur [T _{max}]	95 °C	1)	≥ -25 °C	60 °C	_
Betriebsdruck [P _{max}]	_	0,6 MPa (6 bar)	1,6 MPa (16 bar)	1,6 MPa (16 bar)	_
Bemerkungen	nach geltenden Richtlinien ²⁾ T _{max} : 105 °C bei Heizkörper- anbindung T _{max} : 95 °C	für Flachkollek- toren	Inhibitoren für Kaltwasser- sätze, siehe Werkstoffbe- ständigkeit	trocken, Ölgehalt < 25 mg/m ³	1) 3)

¹⁾ Abstimmung mit Viega erforderlich

Einsatzbereich des FKM-Dichtelements

Einsatzbereich	Fernwärmeversorgung	Solaranlagen	Druckluft	
Anwendung	Fernwärme-Versorgungs- anlagen in Sekundär- kreisläufen	Solarkreislauf	alle Rohrleitungsab- schnitte	
Betriebstemperatur [T _{max}]	140 °C	1)	60 °C	
Betriebsdruck [P _{max}]	1,6 MPa (16 bar)	0,6 MPa (6 bar)	1,6 MPa (16 bar)	
Bemerkungen	Um sicherzustellen, dass die Anlage gemäß den Vorgaben des Versor- gungsunternehmens installiert wird, vor der Installation Rücksprache mit dem Versorgungsun- ternehmen halten.	Für Vakuum-Röhrenkol- lektoren	trocken 2)	

¹⁾ Abstimmung mit Viega erforderlich.

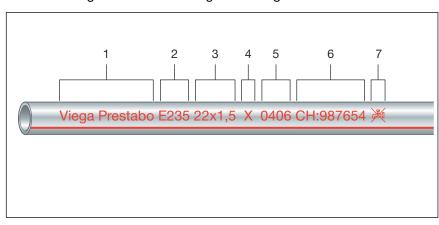
²⁾ siehe 🖔 "Regelwerke aus Abschnitt: Dichtelemente" auf Seite 4

³⁾ siehe auch Dokument "Einsatzbereiche metallener Installationssysteme" auf der Viega Website

²⁾ siehe auch Dokument "Einsatzbereiche metallener Installationssysteme" auf der Viega Website

Die Dichtwerkstoffe des Pressverbindersystems unterliegen einer thermischen Alterung, die von der Medientemperatur und der Betriebsdauer abhängig ist. Je höher die Medientemperatur, desto schneller schreitet die thermische Alterung des Dichtwerkstoffs voran. Bei speziellen Betriebsbedingungen, z. B. bei industriellen Wärmerückgewinnungsanlagen, ist ein Abgleich der Angaben des Apparateherstellers mit den Angaben über das Pressverbindersystem erforderlich.

Vor dem Einsatz des Pressverbindersystems außerhalb der beschriebenen Einsatzbereiche oder bei Zweifeln über die richtige Werkstoffauswahl wenden Sie sich an Viega.


2.3.5 Kennzeichnungen an Bauteilen

Rohrkennzeichnung

Prestabo XL-Rohr	Prestabo XL-Rohr für Sonderan- wendungen		
rote durchgezogene Linie	rote gestrichelte Linie		
rote Beschriftung	schwarze Beschriftung		

Die Rohrkennzeichnungen enthalten wichtige Angaben zur Materialbeschaffenheit und Herstellung der Rohre. Die rote Linie auf den Rohren dient als Warnung: "Nicht für Trinkwasser geeignet!".

Die Bedeutung der Kennzeichnung ist wie folgt:

Abb. 6: Rohr galvanisch verzinkt

- 1 Systemhersteller / Systemname
- 2 DIN-Werkstoffnummer
- 3 dxs
- 4 Symbole der Rohrhersteller
- 5 Herstellungsdatum
- 6 Chargennummer
- 7 Symbol "Nicht für Trinkwasser geeignet!"

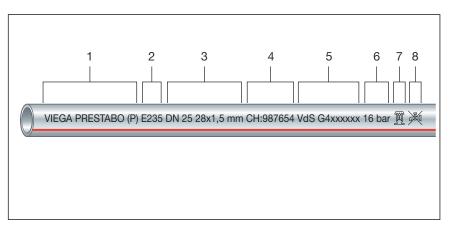
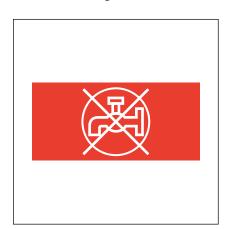



Abb. 7: Rohr innen und außen sendzimirverzinkt

- 1 Systemhersteller / Systemname
- 2 DIN-Werkstoffnummer
- 3 DN-Rohrnennweite und d x s
- 4 Chargennummer
- 5 Prüfzeichen / -nummer
- 6 Druckstufe
- 7 Geeignet für Sprinkler
- 8 Symbol "Nicht für Trinkwasser geeignet!"

Kennzeichnungen an Pressverbindern

Das rote Rechteck dient als Warnung: "Nicht für Trinkwasser geeignet!".

Das Rechteck befindet sich an folgenden Stellen:

- auf dem Pressende des Pressverbinders
- auf dem Flansch des Flanschübergangs

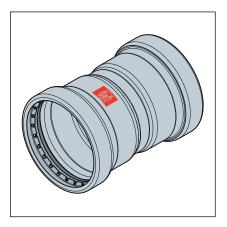


Abb. 8: Kennzeichnung "Nicht für Trinkwasser geeignet"

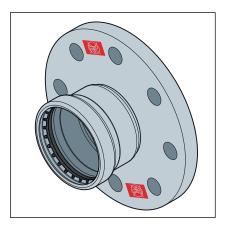


Abb. 9: Kennzeichnung "Nicht für Trinkwasser geeignet"

2.4 Verwendungsinformationen

2.4.1 Korrosion

Innenkorrosion (Dreiphasengrenze)

Bei metallenen Werkstoffen kann Korrosion im Bereich der Dreiphasengrenze (Wasser-Werkstoff-Luft) auftreten. Diese Korrosion kann vermieden werden, wenn die Anlage nach dem ersten Befüllen und Entlüften vollständig mit Wasser gefüllt bleibt. Wenn die Anlage nach der Installation nicht sofort in Betrieb genommen werden soll, eine Druckund Dichtheitsprüfung mit Luft oder inerten Gasen durchführen, siehe *Kapitel 3.4.6 "Dichtheitsprüfung" auf Seite 34.*

Prestabo-System in Kühlwasserkreisläufen

Das Prestabo-System in Kombination mit außen galvanisch verzinkten Rohren kann mit seinen Form- und Verbindungsteilen in allen geschlossenen Kühlwasserkreisläufen eingesetzt werden, in denen kein Sauerstoffeintrag während des Betriebs möglich ist.

Durch die Betriebsbedingungen in Kühlwasseranlagen kann es erforderlich sein, das Trägermedium mit einem Frostschutzmittel zu versehen. Bis zu einem Glykolanteil von 50 % am Gesamtwasserinhalt können die Standard-Dichtelemente aus EPDM verwendet werden. Für diesen Anwendungsfall sind innen und außen sendzimirverzinkte Viega Rohre nicht geeignet.

Der Sauerstoffgehalt soll bei salzarmem Wasser < 0,1 mg/l liegen, bei salzhaltigem Wasser < 0,02 mg/l , siehe % "Regelwerke aus Abschnitt: Korrosion" auf Seite 5.

Beim Einsatz in Kühlkreisläufen muss ein lückenloser, äußerer Korrosionsschutz aufgebracht werden, durch den korrosionsfördernde Einflüsse sicher verhindert werden. Dabei die Produktinformationen der Hersteller und die geltenden Richtlinien beachten, siehe $\mbox{\em \#}$ "Regelwerke aus Abschnitt: Korrosion" auf Seite 5.

Außenkorrosion

Prestabo-Rohre und die Pressverbinder sind außen durch eine dünne galvanische Verzinkung geschützt. Diese Verzinkung schützt bei feuchter Umgebung jedoch nicht dauerhaft vor Außenkorrosion. Das System ist für die Verlegung in warmer und trockener Atmosphäre bestimmt. Bei fachgerechter Installation und bestimmungsgemäßer Verwendung kommen die Komponenten also im Regelfall nicht von außen mit Feuchtigkeit in Kontakt.

Dauerhafte Feuchtigkeit am Rohr

Dauerhafte Feuchtigkeit unmittelbar am Rohr entsteht z. B. durch folgende Gegebenheiten:

- durch Kondenswasser oder Niederschläge während der Bauphase
- Tauwasserbildung (z. B. beim Einsatz in Kühlkreisläufen)
- durch Putz- und Spritzwasser sowie Abwasser durch defekte Bodenabdichtungen etc.
- wenn Wasser bestimmungswidrig an die Rohrleitungs-Installation gelangt, z. B. durch einen Baumangel oder Wasserschaden im Gebäude

Schutzmaßnahmen gegen Außenkorrosion

Zum Schutz vor Außenkorrosion des Prestabo-Systems folgende Maßnahmen beachten:

- Rohrleitungen außerhalb von feuchtigkeitsgefährdeten Bereichen verlegen.
- Den Kontakt mit korrosiv wirkenden Baustoffen (z. B. Spachtelmasse oder Ausgleichsestrich) vermeiden.
- Die verlegten Rohrleitungen durch wasserundurchlässige Trennfolien im Fußbodenaufbau vor möglicher Feuchtigkeit, z. B. Estrichfeuchtigkeit, schützen. Die überlappenden Folienübergänge müssen dicht verklebt sein.
- Geschlossenzellige Dämmschläuche verwenden und fachgerecht abdichten. Dabei besonders alle Stoß- und Schnittkanten sorgfältig verkleben. Die Maßnahme ist allerdings kein Ersatz für gegebenenfalls notwendigen und zusätzlichen Korrosionsschutz.
- Bei Installationen, z. B. in industriellen Bereichen, die mit aggressiver Umgebungsluft belastet sind, die internen Werksvorgaben berücksichtigen.

Korrosion durch Putzwasser

In Bereichen, die eine tägliche Reinigung des Fußbodens erfordern (z. B. in Krankenhäusern), kann Korrosion auch dadurch ausgelöst werden, dass sichtbare Heizkörperanschlussleitungen aus dem Boden kommend mit Wasser und Reinigungsmitteln in Kontakt geraten. Das Wasser kann durch undichte Fugen zwischen Rohrleitung und Bodenbelag in die Dämmung eindringen. Dort kann es nicht mehr entweichen und führt zu einer dauerhaften Feuchtigkeit am Rohr, die zu Außenkorrosion führt.

Auch Desinfektionsmittel können eine korrosive Wirkung auf Rohrleitungen haben.

Empfohlene Schutzmaßnahme gegen Korrosion durch Putzwasser

- Heizkörperanschlüsse aus der Wand bevorzugen.
- Für Anschlüsse aus dem Boden kunststoffummantelte Prestabo-Rohre verwenden.
- Die Fugen zwischen Rohrleitung und Bodenbelag fachgerecht versiegeln. Silikonfugen regelmäßig warten.

Für die Verlegung des Prestabo-Systems im Fußbodenbereich und unter Putz empfiehlt Viega die Verwendung des PP-ummantelten Prestabo-Rohrs (Modell 1104). Um einen durchgängigen Korrosionsschutz sicherzustellen, müssen die Pressverbinder und Rohrenden zusätzlich mit einer Korrosionsschutzbinde versehen werden — z. B. Denso Densolen ET 100. Hierbei die entsprechenden Verarbeitungsrichtlinien beachten.

3 Handhabung

HINWEIS!

Korrosionsgefahr durch beschädigte Oberflächen

Die verzinkten Oberflächen der Komponenten dürfen nicht beschädigt werden (z. B. mit spitzen Gegenständen). Andernfalls besteht Korrosionsgefahr.

3.1 Transport

Beim Transport von Rohren Folgendes beachten:

- Rohre nicht über Ladekanten ziehen. Die Oberfläche könnte beschädigt werden.
- Rohre beim Transport sichern. Durch Verrutschen könnten die Rohre verbiegen.
- Schutzkappen an Rohrenden nicht beschädigen und erst unmittelbar vor der Montage entfernen. Beschädigte Rohrenden dürfen nicht mehr verpresst werden.

3.2 Lagerung

Bei der Lagerung die Anforderungen der geltenden Richtlinien beachten, siehe $\mbox{\ensuremath{\mbox{$\section}$}}$ "Regelwerke aus Abschnitt: Lagerung" auf Seite 5:

- Komponenten sauber und trocken lagern.
- Für Belüftung sorgen.
- Komponenten nicht direkt auf dem Boden lagern.
- Mindestens drei Auflagepunkte für die Lagerung von Rohren schaffen.
- Rohre nicht mit Folien abdecken, Kondenswasserbildung vermeiden.
- Unterschiedliche Rohrgrößen möglichst getrennt lagern. Wenn keine getrennte Lagerung möglich ist, kleine Größen auf großen Größen lagern.
- Rohre unterschiedlicher Materialien getrennt lagern, um Kontaktkorrosion zu vermeiden.

3.3 Montageinformationen

3.3.1 Montagehinweise

Systemkomponenten prüfen

Durch Transport und Lagerung können Systemkomponenten beschädigt worden sein.

- Alle Teile prüfen.
- Beschädigte Komponenten austauschen.
- Beschädigte Komponenten nicht reparieren.
- Verschmutzte Komponenten dürfen nicht installiert werden.

3.3.2 Potenzialausgleich

GEFAHR! Gefahr durch elektrischen Strom

Ein Stromschlag kann zu Verbrennungen und schweren Verletzungen bis hin zum Tod führen.

Da alle Rohrleitungssysteme aus Metall elektrisch leitend sind, kann ein versehentlicher Kontakt mit einem Netzspannung führenden Teil dazu führen, dass das ganze Rohrleitungssystem und angeschlossene metallische Komponenten (z. B. Heizkörper) unter Spannung stehen.

- Lassen Sie Arbeiten an der Elektrik nur durch Elektro-Fachhandwerker durchführen.
- Binden Sie Rohrleitungssysteme aus Metall immer in den Potenzialausgleich mit ein.

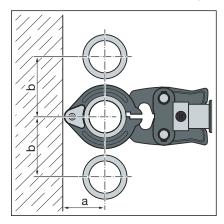
Der Errichter der elektrischen Anlage ist dafür verantwortlich, dass der Potenzialausgleich überprüft bzw. sichergestellt wird.

3.3.3 Zulässiger Austausch von Dichtelementen

Wichtiger Hinweis

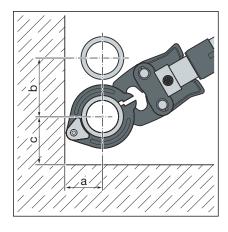
Dichtelemente in Pressverbindern sind mit ihren werkstoffspezifischen Eigenschaften auf die jeweiligen Medien bzw. Einsatzbereiche der Rohrleitungssysteme abgestimmt und im Regelfall nur dafür zertifiziert.

Der Austausch eines Dichtelements ist grundsätzlich zulässig. Das Dichtelement muss gegen ein bestimmungsgemäßes Ersatzteil für den vorgesehenen Verwendungszweck ausgetauscht werden % Kapitel 2.3.4 "Dichtelemente" auf Seite 11. Die Verwendung anderer Dichtelemente ist nicht zulässig.



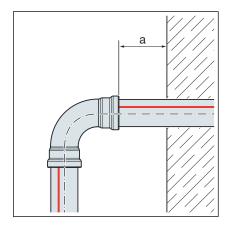
In folgenden Situationen ist der Austausch eines Dichtelements zulässig:

- wenn das Dichtelement im Pressverbinder offensichtlich beschädigt ist und gegen ein werkstoffgleiches Viega Ersatz-Dichtelement ausgetauscht werden soll
- wenn ein EPDM-Dichtelement gegen ein FKM-Dichtelement (höhere Temperaturbeständigkeit, z. B. für industriellen Einsatz) ausgetauscht werden soll

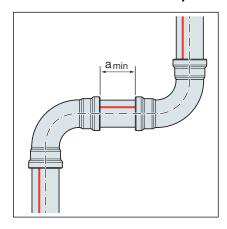

3.3.4 Platzbedarf und Abstände

Pressen zwischen Rohrleitungen

d	64,0	76,1	88,9	108,0
a [mm]	110	110	120	135
b [mm]	185	185	200	215


Pressen zwischen Rohr und Wand

d	64,0	76,1	88,9	108,0
a [mm]	110	110	120	135
b [mm]	185	185	200	215
c [mm]	130	130	140	155



Wandabstand

d	64,0–108,0		
Mindestabstand a _{min} [mm]	20		

Abstand zwischen den Verpressungen

Mindestabstand bei Pressringen d64,0 bis 108,0

d	a _{min} [mm]
64,0	
76,1	15
88,9	15
108,0	

Z-Maße

Die Z-Maße finden Sie auf der entsprechenden Produktseite im Online-Katalog.

3.3.5 Benötigtes Werkzeug

HINWEIS!

Prestabo XL-Verbinder dürfen nur mit Viega Pressringen der Dimensionen 64,0–108,0 verpresst werden. Die Verbindung mit Viega Pressketten der Dimensionen 76,1–108,0 ist nicht zulässig.

Für die Herstellung einer Pressverbindung werden folgende Werkzeuge benötigt:

- Rohrabschneider oder feinzahnige Metallsäge
- Entgrater und Farbstift zum Anzeichnen
- Pressmaschine mit konstanter Presskraft von 32 kN
- Pressring mit dazugehöriger Gelenkzugbacke, passend für den Rohrdurchmesser und mit geeignetem Profil

Abb. 10: Pressringe und Gelenkzugbacke

Zur Verpressung empfiehlt Viega die Verwendung von Viega Systemwerkzeugen.

Die Viega Systempresswerkzeuge wurden speziell für die Verarbeitung der Viega Pressverbindersysteme entwickelt und darauf abgestimmt.

3.4 Montage

3.4.1 Dichtelement austauschen

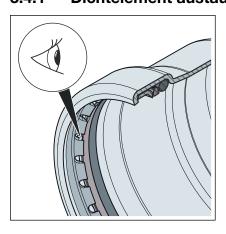


Abb. 11: Schneidring

Dichtelement entfernen

VORSICHT! Verletzungsgefahr durch scharfe Kanten

Oberhalb des Dichtelements befinden sich ein Trennring und ein scharfkantiger Schneidring (siehe Pfeil). Beim Wechseln des Dichtelements besteht die Gefahr von Schnittverletzungen.

Greifen Sie nicht mit bloßen Händen in den Pressverbinder.

Verwenden Sie keine spitzen oder scharfkantigen Gegenstände beim Entfernen des Dichtelements, die das Dichtelement oder die Sicke beschädigen können.

Das Dichtelement aus der Sicke entfernen, dabei den Trennring in der Sicke belassen.

Vorsichtig vorgehen, damit der Trennring und der Dichtelementesitz nicht beschädigt werden.

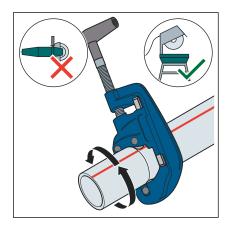
Dichtelement einsetzen

- Ein neues, unbeschädigtes Dichtelement unterhalb des Trennrings in die Sicke einsetzen.
 - Dabei darauf achten, dass das Dichtelement nicht durch den Schneidring beschädigt wird.
- Sicherstellen, dass sich das Dichtelement vollständig in der Sicke befindet.

3.4.2 Rohre ablängen

HINWEIS!

Undichte Pressverbindungen durch beschädigtes Material!


Durch beschädigte Rohre oder Dichtelemente können Pressverbindungen undicht werden.

Beachten Sie die folgenden Hinweise, um Beschädigungen an Rohren und Dichtelementen zu vermeiden:

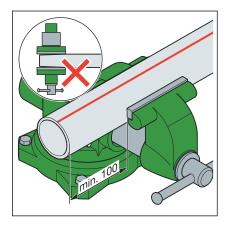
- Verwenden Sie zum Ablängen keine Trennscheiben (Winkelschleifer) oder Schneidbrenner.
- Verwenden Sie keine Fette und Öle (wie z. B. Schneidöl).

Für Informationen zu Werkzeugen siehe auch *Skapitel 3.3.5 "Benötigtes Werkzeug" auf Seite 21.*

Das Rohr mit einem Rohrabschneider oder einer feinzahnigen Metallsäge möglichst rechtwinklig durchtrennen, um eine vollständige und gleichmäßige Rohreinstecktiefe sicher zu stellen.

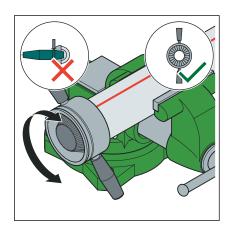
Riefen auf der Rohroberfläche vermeiden.

3.4.3 Rohre entgraten

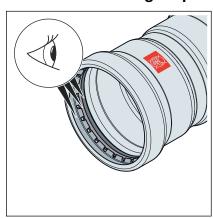

Die Rohrenden müssen nach dem Kürzen innen und außen sorgfältig entgratet werden.

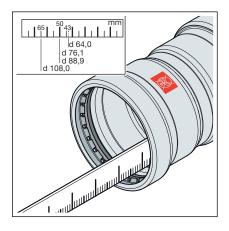
Durch das Entgraten wird vermieden, dass das Dichtelement beschädigt wird oder der Pressverbinder bei der Montage verkantet. Viega empfiehlt, einen Entgrater zu verwenden (Modell 2292.4XL).

HINWEIS! Beschädigung durch falsches Werkzeug!


Benutzen Sie zum Entgraten keine Schleifscheiben oder ähnliches Werkzeug. Die Rohre können dadurch beschädigt werden.

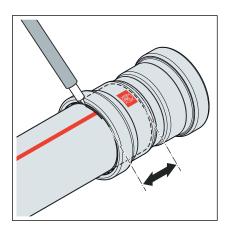
- Das Rohr in den Schraubstock einspannen.
- Beim Einspannen mindestens 100 mm Abstand (a) zum Rohrende einhalten.

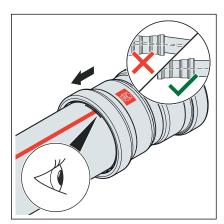

Die Rohrenden dürfen nicht verbogen oder beschädigt werden.


Das Rohr innen und außen entgraten.

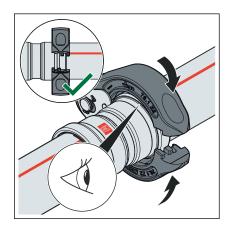
3.4.4 Verbindung verpressen

Voraussetzungen:

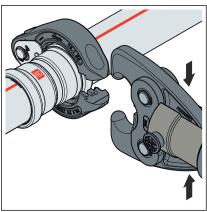

- Das Rohrende ist nicht verbogen oder beschädigt.
- Das Rohr ist entgratet.
- Im Pressverbinder befindet sich das richtige Dichtelement.
 EPDM = schwarz glänzend
 FKM = schwarz matt
- Dichtelement, Trennring und Schneidring sind unbeschädigt.
- Dichtelement, Trennring und Schneidring befinden sich vollständig in der Sicke.


Die Einstecktiefe im Pressverbinder messen.

d [mm]	Einstecktiefe [mm]
64,0	43
76,1	50
88,9	50
108,0	60

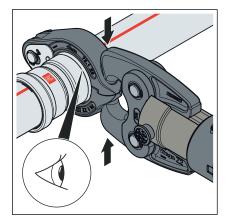


Die Einstecktiefe auf dem Rohr markieren.

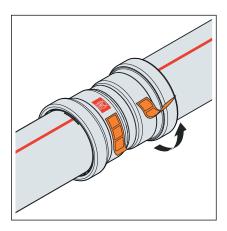


- Den Pressverbinder bis zur markierten Einstecktiefe auf das Rohr schieben. Den Pressverbinder nicht verkanten.
- Die Gelenkzugbacke auf die Pressmaschine stecken und den Haltebolzen bis zum Einrasten einschieben.

INFO! Beachten Sie die Anleitung des Presswerkzeugs.



Den Pressring auf den Pressverbinder setzen. Der Pressring muss den äußersten Ring des Pressverbinders vollständig bedecken.



Die Gelenkzugbacke öffnen.

- Die Gelenkzugbacke in die Aufnahmen des Pressrings einklinken.
- Den Pressvorgang durchführen.
- Die Gelenkzugbacke öffnen und den Pressring entfernen.

- Die Kontrolllasche entfernen.
 - Die Verbindung ist als verpresst gekennzeichnet.

3.4.5 Flanschverbindungen

Im gezeigten Pressverbindersystem sind Flanschverbindungen in den Größen 64,0 bis 108,0 mm möglich.

Die Montage von Flanschverbindungen darf nur von qualifiziertem Personal durchgeführt werden. Die Qualifizierung von Personal für die Montage von Flanschverbindungen kann z. B. in Anlehnung an geltende Richtlinien erfolgen, siehe \$ "Regelwerke aus Abschnitt: Flanschverbindung herstellen" auf Seite 5.

- Ein entsprechender Ausbildungsabschnitt zur sachgerechten Flanschverbindungsmontage in der beruflichen Ausbildung (des Arbeits-/Fachpersonals) mit qualifiziertem Abschluss sowie eine erfolgreiche regelmäßige Anwendung gelten als hinreichender Nachweis.
- Anderen Mitarbeitern ohne entsprechende fachspezifische Ausbildung (z. B. Betriebspersonal), die Flanschverbindungen montieren, muss durch theoretische und praktische Schulungsmaßnahmen Sachkunde vermittelt werden, dies muss dokumentiert werden.

Unterlegscheiben

Die Vorteile beim Einsatz von gehärteten Unterlegscheiben sind:

- Definierte Reibfläche bei der Montage.
- Definierte Rauigkeit bei der Berechnung und dadurch Reduzierung der Streuweiten des Anzugsmoments, wodurch rechnerisch eine größere Sechskantschraubenkraft erzielt werden kann.

Flanscharten

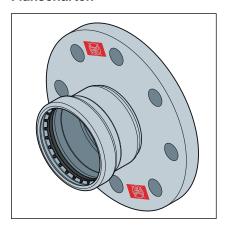


Abb. 12: Festflansch 1159XL

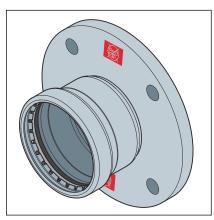
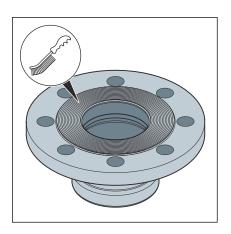
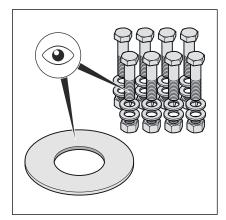



Abb. 13: Festflansch 1159.1XL

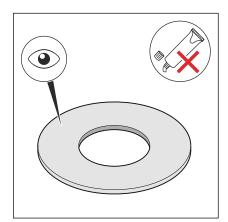
Flanschverbindung herstellen

Festflansch

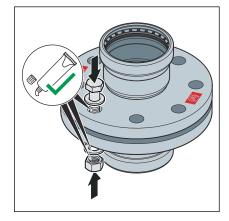
- Stahl unlegiert, verzinkt
- Pressanschluss aus Stahl unlegiert, verzinkt
- Modell 1159XL: 64,0 bis 108,0 mm (PN10/16)
- Modell 1159.1XL: 64,0 bis 108,0 mm (PN6)


Stellen Sie immer erst die Flanschverbindung und dann die Pressverbindung her.

Gegebenenfalls vorhandene temporäre Beschichtungen auf den Flanschdichtflächen vor der Montage rückstandsfrei entfernen, dazu Reinigungsmittel und eine geeignete Drahtbürste verwenden.

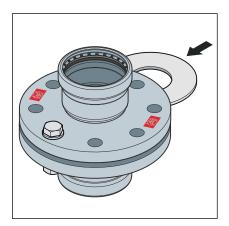

HINWEIS! Beim Austausch von Dichtungen darauf achten, die alte Dichtung vollständig von der Flanschdichtfläche zu entfernen, ohne die Flanschdichtfläche zu beschädigen.

Darauf achten, dass die Flanschdichtflächen sauber, unbeschädigt und eben sind. Insbesondere dürfen keine radial verlaufenden Oberflächenbeschädigungen wie Riefen oder Schlagstellen vorhanden sein.



- Bei der Demontage ausgebaute Sechskantschrauben, Muttern und Unterlegscheiben bei Beschädigungen durch neue ersetzen.

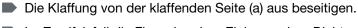
- Die Dichtung muss sauber, unbeschädigt und trocken sein. Keine Haftmittel und Montagepasten für Dichtungen verwenden.
- Gebrauchte Dichtungen nicht wiederverwenden.
- Keine Dichtungen mit Knickstellen verwenden, da sie ein Sicherheitsrisiko darstellen.
- Sicherstellen, dass Dichtungen frei von Fehlern und Mängeln sind und die Herstellerinformationen eingehalten werden.

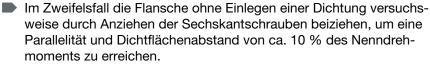


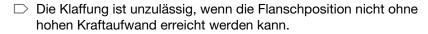
- Die folgenden Flanschelemente mit geeignetem Schmiermittel schmieren:
 - Sechskantschraubengewinde
 - Unterlegscheibe
 - Mutternauflage

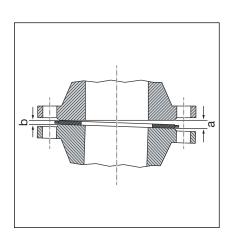
HINWEIS! Die Herstellerinformation zu Einsatz- und Temperaturbereich des Schmiermittels beachten.

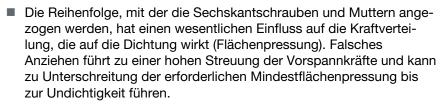
Dichtelement einbauen und zentrieren

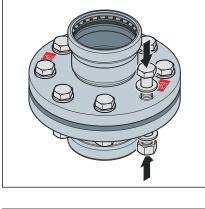

Die richtige Montage von Flanschverbindungen setzt parallel fluchtende Flanschblätter ohne Mittenversatz voraus, die ein positionsgerechtes Einbringen des Dichtelements ohne Beschädigung erlauben.

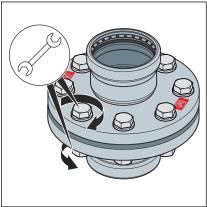

Die Dichtflächen so weit auseinanderdrücken, dass die Dichtung ohne Kraftaufwand und unbeschädigt eingebracht werden kann.


Die Klaffung (Nichtparallelität der Dichtflächen) vor dem Anziehen der Sechskantschrauben ist unbedenklich, wenn die zulässige Klaffung nicht überschritten wird.


DN	zulässige Klaffung a-b [mm]
50–100	0,6






Systematik für das Anziehen von Sechskantschrauben

- Nach dem Anziehen der Mutter sollten wenigstens zwei, aber nicht mehr als fünf Gewindegänge am Sechskantschraubenende überstehen.
- Die Sechskantschrauben von Hand vormontieren, dabei Folgendes beachten:
 - Die Sechskantschrauben so einbauen, dass alle Sechskantschraubenköpfe auf einer Flanschseite angeordnet sind.
 - Bei horizontal angeordneten Flanschen die Sechskantschrauben von oben durchstecken.
 - Schwergängige Sechskantschrauben durch leichtgängige ersetzen.

Der gleichzeitige Einsatz mehrerer Anzugswerkzeuge ist möglich.

Anzugsreihenfolge

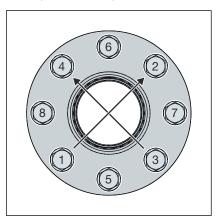


Abb. 14: Modell 1159XL

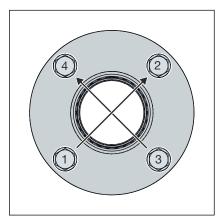


Abb. 15: Modell 1159.1XL

- Alle Sechskantschrauben über Kreuz mit 30 % des Sollanzugsmoments anziehen.
- Alle Sechskantschrauben wie in Schritt 1 mit 60 % des Sollanzugsmoments anziehen.
- Alle Sechskantschrauben wie in Schritt 1 mit 100 % des Sollanzugsmoments anziehen.
- Alle Sechskantschrauben nochmals mit vollem Sollanzugsmoment umlaufend nachziehen. Diesen Vorgang so oft wiederholen, bis sich die Muttern bei Aufbringen des vollen Anzugsmoments nicht mehr weiterdrehen lassen.

Erforderliche Anzugsmomente

Anzugsmomente Prestabo XL-Flanschübergänge PN 6

Modell	DN	Artikel- nummer	Gewinde	Anzugsmo- ment mind. erforderlich [Nm]	Anzugsmo- ment max. zulässig [Nm]	Sechskant- schrauben- länge (mm)	Festigkeits- klasse
1159.1XL	50	630 058 ¹	M12	28	82	50	8.8
	65	629 939 ¹	IVIIZ	34			
	03	629 9461 ²		34	82	70	8.8
	80	629 9151 ²	M16	55	202		
	100	629 9221 ²		66			

Die Angaben zur Erfüllung der Anforderungen der Dichtheitsklasse L0,01 (TA Luft) wurden nach geltender Norm berechnet und gelten ausschließlich bei Verwendung von Viega Artikeln, siehe auch $\mbox{\colored}$ "Regelwerke aus Abschnitt: Flanschverbindung herstellen" auf Seite 5.

¹ Zur Verwendung mit Montageset Artikelnummer 651251

² Zur Verwendung mit Montageset Artikelnummer 651268

Anzugsmomente Prestabo XL-Flanschübergänge PN 10/16

Modell	DN	Artikel- nummer	Gewinde	Anzugsmo- ment mind. erforderlich [Nm]	Anzugsmo- ment max. zulässig [Nm]	Sechskant- schrauben- länge (mm)	Festigkeits- klasse
32	32	716 851 ¹		69			
1159XL	40	716 868 ¹	M16	77	202	70	8.8
	50	716 875 ¹		87			

Die Angaben zur Erfüllung der Anforderungen der Dichtheitsklasse L0,01 (TA Luft) wurden nach geltender Norm berechnet und gelten ausschließlich bei Verwendung von Viega Artikeln, siehe auch $\mbox{\constant}$ "Regelwerke aus Abschnitt: Flanschverbindung herstellen" auf Seite 5.

Flanschverbindung lösen

Vor Beginn der Demontage einer bestehenden Flanschverbindung gegebenenfalls die Freigabe und einen Arbeitserlaubnisschein vom zuständigen Betrieb einholen, dabei Folgendes beachten:

- Der Anlagenabschnitt muss drucklos und vollständig gespült sein.
- Ein- oder Anbauteile die nicht separat gehalten werden, vor dem Lösen der Flanschverbindung sichern. Dies gilt auch für Befestigungssysteme wie Federhänger und -stützen.
- Das Lösen von Sechskantschrauben bzw. Muttern auf der körperabgewandten Seite beginnen, die restlichen Sechskantschrauben leicht lösen und erst vollständig demontieren, wenn sichergestellt ist, dass keine Gefahr vom Rohrleitungssystem ausgeht. Wenn eine Rohrleitung unter Spannung steht, droht ein Ausschlagen der Rohrleitung.
- Die Sechskantschrauben bzw. Muttern in mindestens zwei Durchgängen kreuzweise lösen.
- Offene Strangenden mit Blindverschlüssen verschließen.
- Demontierte Rohrleitungen nur in verschlossenem Zustand transportieren
- Beim Austausch von Dichtungen darauf achten, die alte Dichtung vollständig von der Flanschdichtfläche zu entfernen, ohne die Flanschdichtfläche zu beschädigen.

HINWEIS! Vorsicht bei der Verwendung eines Trennschleifers!

Beim Lösen defekter Sechskantschrauben und Muttern mithilfe eines Trennschleifers entstehen Funken, die sich in das Rohrmaterial einbrennen und Korrosion verursachen können.

¹ Zur Verwendung mit Montageset Artikelnummer 494063

3.4.6 Dichtheitsprüfung

Diese Prüfung an der fertig gestellten, jedoch noch nicht verdeckten Anlage durchführen.

Die geltenden Richtlinien beachten, siehe $\mbox{\ensuremath{\slinebeit}}$ "Regelwerke aus Abschnitt: Dichtheitsprüfung" auf Seite 5.

Auch für Nichttrinkwasser-Installationen die Dichtheitsprüfung entsprechend den geltenden Richtlinien durchführen, siehe $\mbox{\congrue{$\cupe5$}}$, Regelwerke aus Abschnitt: Dichtheitsprüfung" auf Seite 5.

Das Ergebnis dokumentieren.

Um Korrosion nach der Durchführung einer Dichtheitsprüfung mit Wasser zu vermeiden, muss die Anlage vollständig gefüllt bleiben.

Die Anforderungen an das Füll- und Ergänzungswasser entsprechend den geltenden Richtlinien beachten, siehe \$\,\tilde{\pi}\,_Regelwerke aus Abschnitt: Dichtheitsprüfung" auf Seite 5.

3.5 Entsorgung

Produkt und Verpackung in die jeweiligen Materialgruppen (z. B. Papier, Metalle, Kunststoffe oder Nichteisenmetalle) trennen und gemäß der national gültigen Gesetzgebung entsorgen.

